Introduction To Computational Science

Author: Angela B. Shiflet
Publisher: Princeton University Press
ISBN: 9781400850556
Size: 18.79 MB
Format: PDF, ePub, Docs
View: 31

Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind—now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors

Introduction To Computational Science

Author: Angela B. Shiflet
Publisher: Princeton University Press
ISBN: 9780691125657
Size: 17.99 MB
Format: PDF, Docs
View: 79

Computational science is a quickly emerging field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. However, limited educational materials exist in this field. Introduction to Computational Science fills this void with a flexible, readable textbook that assumes only a background in high school algebra and enables instructors to follow tailored pathways through the material. It is the first textbook designed specifically for an introductory course in the computational science and engineering curriculum. The text embraces two major approaches to computational science problems: System dynamics models with their global views of major systems that change with time; and cellular automaton simulations with their local views of how individuals affect individuals. While the text is generic, an extensive author-generated Web-site contains tutorials and files in a variety of software packages to accompany the text. Generic software approach in the text Web site with tutorials and files in a variety of software packages Engaging examples, exercises, and projects that explore science Additional, substantial projects for students to develop individually or in teams Consistent application of the modeling process Quick review questions and answers Projects for students to develop individually or in teams Reference sections for most modules, as well as a glossary Online instructor's manual with a test bank and solutions

Introduction To Computational Science

Author: Angela B. Shiflet
Publisher:
ISBN: 0691160716
Size: 20.47 MB
Format: PDF, Docs
View: 99

Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages. This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects. The only introductory textbook of its kind--now fully updated and expanded Features two new chapters on agent-based simulations and modeling with matrices Increased coverage of high-performance computing and its applications Includes additional modules, review questions, exercises, and projects An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors) An online illustration package is available to professors

Simulation For The Social Scientist

Author: Gilbert, Nigel
Publisher: McGraw-Hill Education (UK)
ISBN: 0335216005
Size: 12.59 MB
Format: PDF, Docs
View: 65

Social sciences -- Simulation methods. Social interaction -- Computer simulation. Social sciences -- Mathematical models. (publisher)

Introduction To Computational Earthquake Engineering

Author: Muneo Hori
Publisher: World Scientific
ISBN: 9781908978417
Size: 10.26 MB
Format: PDF, ePub
View: 27

Introduction to Computational Earthquake Engineering covers solid continuum mechanics, finite element method and stochastic modeling comprehensively, with the second and third chapters explaining the numerical simulation of strong ground motion and faulting, respectively. Stochastic modeling is used for uncertain underground structures, and advanced analytical methods for linear and non-linear stochastic models are presented. The verification of these methods by comparing the simulation results with observed data is then presented, and examples of numerical simulations which apply these methods to practical problems are generously provided. Furthermore three advanced topics of computational earthquake engineering are covered, detailing examples of applying computational science technology to earthquake engineering problems. Contents:Preliminaries:Solid Continuum MechanicFinite Element MethodStochastic ModelingStrong Ground Motion:The Wave Equation for SolidsAnalysis of Strong Ground MotionSimulation of Strong Ground MotionFaulting:Elasto-Plasticity and Fracture MechanicsAnalysis of FaultingSimulation of FaultingBEM Simulation of FaultingAdvanced Topics:Integrated Earthquake SimulationUnified Visualisation of Earthquake SimulationStandardisation of Earthquake Resistant DesignMulti-Agent Simulation for Evacuation Process AnalysisAppendices:Earthquake MechanismsAnalytical MechanicsNumerical Techniques for Solving Wave EquationUnified Modeling Language Readership: Academic and industry: engineers, students; advanced undergraduates in the field of earthquake engineering. Keywords:Earthquake Engineering;Computational Mechanics;Structural Analysis;Wave Propagation;Elasto-Plastic Analysis;Fracture Analysis; Stochastic ModelingKey Features:Detailed explanation is given to modeling of uncertain ground structures; stochastic modeling which treats the uncertainty in a stochastic manner is usedSeveral key numerical algorithms and techniques are explained in solving large-scale, non-linear and dynamic problemsApplication of these methods to simulate actual strong ground motion and faulting is presented

Introduction To Computational Social Science

Author: Claudio Cioffi-Revilla
Publisher: Springer
ISBN: 9783319501314
Size: 11.92 MB
Format: PDF, ePub
View: 45

This textbook provides a comprehensive and reader-friendly introduction to the field of computational social science (CSS). Presenting a unified treatment, the text examines in detail the four key methodological approaches of automated social information extraction, social network analysis, social complexity theory, and social simulation modeling. This updated new edition has been enhanced with numerous review questions and exercises to test what has been learned, deepen understanding through problem-solving, and to practice writing code to implement ideas. Topics and features: contains more than a thousand questions and exercises, together with a list of acronyms and a glossary; examines the similarities and differences between computers and social systems; presents a focus on automated information extraction; discusses the measurement, scientific laws, and generative theories of social complexity in CSS; reviews the methodology of social simulations, covering both variable- and object-oriented models.

Computational Materials Science

Author: June Gunn Lee
Publisher: CRC Press
ISBN: 9781498749763
Size: 20.37 MB
Format: PDF, ePub, Mobi
View: 46

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.